
Socket Programming in JAVA

Mohammed Abdalla Youssif

1

OUTLINE
• BACKGROUND

• What Is a Socket?

• Ports

• Two essential types of sockets

• Network Exceptions

• Classes in Network programming

• Set up input and output streams

• TCP Sockets

• Socket Client

• Socket Server

• How do I create an input stream?

• How do I close sockets?

2

BACKGROUND
• The communication that occurs between the

client and the server must be reliable.

• reliable means That is, no data can be
dropped and must arrive on the client side in
the same order in which the server sent it.

• TCP provides a reliable, point-to-point
communication channel that client-server
applications.

3

What Is a Socket?
• A socket is one end-point of a two-way

communication link between two programs running
on the network.

• Socket classes are used to represent the connection
between a client program and a server program.

• The java.net package provides two classes :

– Socket --that implement the client side of the
connection

– ServerSocket implement server side of the
connection, respectively.

•

4

What Is a Socket?
• A socket is bound to a port number so that the TCP

layer can identify the application that data is
destined to be sent to.

• Normally, a server runs on a specific computer and
has a socket that is bound to a specific port number.

• The server just waits, listening to the socket for a
client to make a connection request.

• On the client-side: The client knows the hostname of
the machine on which the server is running and the
port number on which the server is listening.

5

What Is a Socket?
• To make a connection request, the client tries to

connect with the server on the server's machine and
port.

• The client also needs to identify itself to the server
so it binds to a local port number that it will use
during this connection.

•

6

What Is a Socket?
• If everything goes well, the server accepts the

connection.

• Upon acceptance, the server gets a new socket
bound to the same local port and also has its remote
endpoint set to the address and port of the client.

• On the client side, if the connection is accepted, a
socket is successfully created and the client can use
the socket to communicate with the server.

•

7

What Is a Socket?
• The client and server can now communicate by

writing to or reading from their sockets.

• An endpoint is a combination of an IP address and a
port number.

• Every TCP connection can be uniquely identified by
its two endpoints.

• That way you can have multiple connections
between your host and the server.

8

Ports

Port 0

Port 1

Port 65535

• Each host has 65,536
ports

• Some ports are
reserved for specific
apps
– 20,21: FTP

– 23: Telnet

– 80: HTTP

 A socket provides an interface
to send data to/from the
network through a port

What is a Port? A Port Number?

• Port numbers are used to identify services on
a host

• – Port numbers can be:
• well-known

• dynamic or private

• Clients usually use dynamic ports

1

Two essential types of sockets

• STREAM

– a.k.a. TCP

– reliable delivery

– in-order guaranteed

– connection-oriented

– bidirectional

Service

Request

Service

Request

Service

Request

Limit on Number of

Processes that can

successfully request

service at a time

Process

Request

Serviced

2

Connect
3

“Listen” for

service

requests

• DATAGRAM

– a.k.a. UDP

– unreliable delivery; data can be

lost, although this is unusual

– no order guarantees

– no notion of “connection” – app

indicates dest. for each packet

– can send or receive

Two essential types of sockets

Process

Process

Send to recipient

Receive from Sender

Indeterminate

path

TCP Vs. UDP Socket programming

• Sockets are a protocol independent method of
creating a connection between processes.
Sockets can be either

• Connection based or Connectionless: Is a
connection established before communication or
does each packet describe the destination?

• Packet based or Streams based: Are there
message boundaries or is it one stream?

• Reliable or Unreliable: Can messages be lost,
duplicated, reordered, or corrupted?

TCP Vs. UDP Socket programming

• SOCK_STREAM

– TCP

– connection-oriented

– reliable delivery

– in-order guaranteed

– bidirectional

Two essential types of sockets

• SOCK_DGRAM

– UDP

– no notion of “connection” – app

– indicates dest. for each packet

– unreliable delivery

– no order guarantees

– can send or receive

UDP Connection

TCP

• Unlike UDP, TCP is a connection-oriented protocol. This
means that before the client and server can start to send
data to each other, they first need to handshake and
establish a TCP connection.

• When creating the TCP connection, we associate with it
the client socket address (IP address and port number)
and the server socket address (IP address and port
number).

• With the TCP connection established, when one side wants
to send data to the other side, it just drops the data into
the TCP connection via its socket. This is different from
UDP, for which the server must attach a destination
address to the packet before dropping it into the socket.

TCP Connection

Network Exceptions in Java

• BindException

• ConnectException

• MalformedURLException

• NoRouteToHostException

• ProtocolException

• SocketException

• UnknownHostException

• UnknownServiceException

Classes in java.net
• The core package java.net contains a number of classes

that allow programmers to carry out network
programming
– ContentHandler

– DatagramPacket

– DatagramSocket

– DatagramSocketImplHttpURLConnection

– InetAddress

– MulticastSocket

– ServerSocket

– Socket

– SocketImpl

– URL

– URLConnection

– URLEncoder

– URLStreamHandler

The InetAddress Class

• Handles Internet addresses both as host names and as IP
addresses

• Static Method getByName returns the IP address of a
specified host name as an InetAddress object

• Methods for address/name conversion:
public static InetAddress getByName(String host) throws UnknownHostException

public static InetAddress[] getAllByName(String host) throws UnknownHostException

public static InetAddress getLocalHost() throws UnknownHostException

public boolean isMulticastAddress()

public String getHostName()

public byte[] getAddress()

public String getHostAddress()

public int hashCode()

public boolean equals(Object obj)

public String toString()

The Java.net.Socket Class

• Connection is accomplished via construction.

– Each Socket object is associated with exactly
one remote host.

• Sending and receiving data is accomplished
with output and input streams.

• There are methods to get an input stream for
a socket and an output stream for the socket.

The Java.net.ServerSocket Class

• The java.net.ServerSocket class represents a server socket.

• It is constructed on a particular port.

• Then it calls accept() to listen for incoming connections.
– accept() blocks until a connection is detected.

– Then accept() returns a java.net.Socket object that is used to perform
the actual communication with the client.

• the “plug”

– backlog is the maximum size of the queue of connection requests

public ServerSocket(int port) throws IOException

public ServerSocket(int port, int backlog) throws IOException

public ServerSocket(int port, int backlog, InetAddress bindAddr) throws IOException

public Socket accept() throws IOException

public void close() throws IOException

Set up input and output streams
• Once a socket has connected you send data to

the server via an output stream. You receive
data from the server via an input stream.

• Methods getInputStream and getOutputStream of
class Socket:

BufferedReader in =
new BufferedReader(

new InputStreamReader(link.getInputStream()));

PrintWriter out =
new PrintWriter(link.getOutputStream(),true);

TCP Sockets

Example: SocketClient.java

CLIENT:

1. Establish a connection to the server
Socket link =

new Socket(<server>,<port>);

2. Set up input and output streams

3. Send and receive data

4. Close the connection

Socket Client

•

• Where Machine name is the machine you are
trying to open a connection to, and
PortNumber is the port (a number) on which
the server you are trying to connect to is
running.

TCP Sockets
Example: SocketServer.java

SERVER:

1. Create a ServerSocket object
ServerSocket servSocket = new ServerSocket(1234);

2. Put the server into a waiting state
Socket link = servSocket.accept();

3. Set up input and output streams

• use thread to serve this client via link
4. Send and receive data

out.println(awaiting data…);
String input = in.readLine();

5. Close the connection
link.close()

Socket Server

• If you are programming a server, then this is
how you open a socket:

•

Socket Server

• When implementing a server you also need to
create a socket object from the ServerSocket
in order to listen for and accept connections
from clients.

•

How do I create an input
stream?

• On the client side, you can use the
DataInputStream class to create an input
stream to receive response from the server:

•

How do I close sockets?

• You should always close the output and input
stream before you close the socket.

• On the client side:

•

How do I close sockets?

• On the server side:

•

Questions

33

Project

• Create new message system to employs.

• System has the ability to broadcast the
message.

• System has the ability to multicast the
message

34

REFERNCES

1. Comparison between TCP sockets and UDP Sockets
http://www.cyberciti.biz/faq/key-differences-between-tcp-
and-udp-protocols/

35

http://www.cyberciti.biz/faq/key-differences-between-tcp-and-udp-protocols/

